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LETTER TO THE EDITOR 

Equivalence and solution of anisotropic spin-1 models and 
generalized t-J fermion models in one dimension* 

A Kliimpert$, A Schadschneidert and I Zittartzt 
t lnstiiui f"r Theoretirche Phyrik. Universiliit zu K 6 h ,  Zilpieher Strasse 77, W-5000 K d n ,  
Federal Republic of Germany 
t Mathematics Departmenl, Melbourne University, Parkville, Victoria 3052, Australia 

Received I May 1991 

Abslrael. We study the relationship o f  two 'q-deformed' spin-l chains-hoth of them are 

One of the spin-l chains is an anisotropic VRS model for which we calculate ground state 
and ground-state properties. The other spin-l  chain corresponds t o  the Zamaladchikov- 
Fateev model which i s  solvable by Bethe ansatz and is equivalent t o  a certain I -J  model. 
The two spin-l models intersect for a cenain value of  the 'deformation' parameter q in a 
second-order phase Immition. 
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Recently the f - J  model has attracted some interest in connection with high-temperature 
superconductivity (Anderson 1987, Zhang and Rice 1988). This model describes hard- 
core fermions with nearest-neighbour hopping and spin exchange interaction along a 
linear chain: 

where 9 is the projector on the subspace of non-doubly occupied states. With U = + 
we have the occupation numbers n," = c;,c,,,, n, = n,++n,-, and the spin-f operators 
s,. Here the henceforth we assume periodic boundary conditions and that the number 

At J = 2 1  the Hamiltonian (1) becomes supersymmetric (Wiegmann 1988) and 
exactly solvable by Bethe ansatz (Schlottmann 1987, Bares and Blatter 1990). It also 
can be mapped on the Lai-Sutherland model (Lai 1974, Sutherland 1975) as shown 
by Sarkar (1990). In the following we shall show that the supersymmetric r-J model 
can also be related to a certain spin-I Hamiltonian thus providing an integrable 

We consider the so-called q-deformed spin-l model which is based on the 
U,[SU(Z)] quantum algebra (Jimbo 1985). Following Batchelor er a/ (1990) we write 

^ P  ":be" , :" ~ . . ~ -  IC--  "̂-..,...:a".--) ut JlLCD L 13 C l r j l l  ,xu1 L.""*C"1C"CC,. 
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its Hamiltonian as 

H(a, b;  9) = b 
L 

{a(S;. S,+, )+[S; .  $ + , + f ( l  - a ) ( q + q - '  - 2 ) ( S ; S ; + , )  
,; = I 

+;(I + a ) ( 9  - q- ' ) (S , ;+ ,  - s f ) I 2 + i a ( l -  a) (9+  9-' - z ) ~ ( s ; s ~ , . , ) ~  
+ & ( I  + a ) ( 9  -9-')(q+9-'-2)(Sfs;+,)(s~+, -s;) 
+; (9  -9-')l[(a- 1 + f (  1 +a)')S:S;+, + 2 ( a + i (  l + a ) 2 ) ( ( ~ f ) 2 + ( ~ ; + , ) 2 ) ]  

+ ( a  - 1) +5a(9'- q-2)(S:+, - S;)}. (2) 

The S; are the spin-1 operators and a and b are interaction constants. At 9 = 1 the 
Hamiltonian reduces to the well known bilinear-biquadratic spin-1 model with o(3)-  
symmetry in spin-space, while for general complex 9 the model is 'deformed' in 
z-direction. In (2) the last term drops out in  the whole sum, but has been added to 
the nearest-neighbour local interaction for convenience. 

For several special values of a and b the model becomes exactly solvable or  certain 
ground-state properties can be calculated exactly. We shall consider two such cases. 

(a) The first case is the Hamiltonian limit of a ZD classical 19-vertex model which 
was solved by Zamolodchikov and Fateev (1980). This ZF model is obtained from (2) 
by setting b = +a = 1. Thus we have 

HzF- H(-I,  1 ;  9 )  - 
= 2 (-s,. s,,, +[s,. s,+, + ( q +  4-1 -2)SiSi I .!+I 1' 

; = I  

- i (q+ 9-1 - 2)2(S;S;+,)2-f(9 - q-')2[s;s;+, + (S;)2+(s.:+,)21-21 ( 3 )  

and the last term in (2) has been left out. The model is physically realistic, i.e. its 
Hamiltonian is Hermitian, for real 9 and unimodular 9 (191 = 1). In the latter case the 
model is critical, i.e. there is no gap in the excitation spectrum (Babujian and Tsvelick 
1985, Kirillov and Reshetikhin 1987, Alcaraz and Martins 1989). 

( p )  The second case is the (generalized) q-deformed VBS model (Batchelor et al 
1990) which is obtained from (2) by setting 

a = 1 + q 2 +  9-2 b =2[(q2+q-2)(1 +q2+q-2)]-1 

That is, 

H&= H ( l  + q 2 + 9 - 2 ,  2[(q2+ q-2)(l+q2+q-2)1- ' ;  9) .  (4) 

Below we shall show that ground state and certain ground-state properties can be 
determined for general 9 in the same way as for the special isotropic VBS model at 
9 = 1, considered by AfAeck et a/ (1988). Note from (3 )  and (4) that z ~ a n d  VBS coincide 
at 9 = *i. 

To treat the VBS model (a more detailed version will be published elsewhere) one 
introduces the eigenstates I *), 10) for S; = * I ,  0 on each site and defines the nine 
possible combined neighbouring states at sites j ,  j + l  as: 11)=I++), 12)=1+0), 

shows that (4) can be written as 
13)=10+), 14)=1+-), 15)=100), 16)=/-+),  17)=10-), lS)=l-O), 19)=I--). Then one 

L 

H:~s=2 1 hj.j+i (5 )  
; = I  
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such that the local interaction h is the sum of projectors, h = Pl + P , + ~ 2 , , + ~ , ; , +  p,,,, 
which project precisely on the five states of the 'q-quintet': 

11) 19) 12)+q213) 17)+q218) c214)+ q216)+(q+ q-')l5) (6a )  

while annihilating the four states of the 'q-triplet' and 'q-singlet': 

qz2) - 13) q217) - IS) 14)-16)+(q-q-')15) q14)+q-'/6)-15) (6b)  

or any linear combination of them. The notation here indicates that these states reduce 
to the usual quintet, triplet and singlet states in the case of O(3)  symmetry at q = 1. 

For general q the projectors P and thus h are not Hermitian. However, it is easy 
to define a physically realistic VBS model by setting 

' 
f i & = 2  1 h:j+,h,,j+l. (7) 

j = ,  

Oi  course, h'h is now HerFitian acting on the staies (66) in the same way as h. For 
real q and q=*i  we have H'&= HC,,. 

The VBS ground state is given by the ansatz 

I&) := Tr g ,  0 g, 0. . . O g L  (8) 
where at site j define the matrix 

in terms of S; eigenstates. To see that &$ssl&,) = 0 one considers the product of nearest 
neighbour sites 

The entries are linear combinations of the states (66) and thus ( k + k ) g O g = O ,  i.e. 
fi&sl$,,)= 0 .  I$") is ground state as f i & s 3 0 .  One can show that I$") is unique except 
for the critical case q = +i where I$") = 10 0 0 .  . . 0) becomes degenerate with other states. 

Correlation functions within the ground state can be calculated in a straightforward 
way. While the derivation and the results will be published elsewhere we here only 
mention a few typical results. The longitudinal correlation (S;S:) between sites j = 1 
and j = r  is given for real and unimodular q, respectively, by 

(92 + 4-*+ 2)[ - ( 1 +  4 2  + q 3 - '  q real 

4 COS2q (1 -2lCOS = e" (11) 
[1-2lcos pp112 1+2lcos PI 

(s;s:)=- 

while the transversal correlation (S7.S:) is obtained as 
(43+ q-'+2)[-( l+q*+q--2)]-' q real 

(s;s:) = - [ =e!?, (12) 2[-(1+21 cos cos(2(r - I)q)[cos P + \ C O S  911 

Both show exponential decay with correlation lengths which only coincide for real q, 
but in general are different from one another (here for q = e'*). This indicates that the 
excitation spectrum of the Hamiltonian for general q is quite interesting and rich in 
structure. As noticed before the VBS model intersects the ZF model at q = *i. There is 
a second-order phase transition at this point, the corresponding singularity is the 
square-root singularity of in the ground state (9). which is also seen in the 
occurrence of icos 'pI in equations (11) and (12). 
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Next we show that the ZF model (3)  is equivalent to a ’q-deformed’ I-J model 
with I = 1, J = 2 which is a generalization of the supersymmetric version of the fermionic 
Hamiltonian (1). We have 

H(-l, 1; q ) a H 7 ,  

:= [-5” C (~~+,,-c,~,+h.c.)5”+2s~.s~+~-fn~n,+, 
j = l  ,,=* 

+ ( q  + q-’) ’ [nj+nj, , , -+ r1-n,+~,+1+2q’+ C 2 ) ( n j  + n,+,) 

The fermionic notation has been explained following equation (1). We remark that in 

annihilation terms on neighbouring sites in the last line. 
To show the equivalence in (13) one identifies the local spin-1 states IO), I * )  with 

the local fermion states: 10) for zero occupation, and I *) for one-fermion occupation 
with spin-+$, while the doubly occupied state is excluded in the mode!. It is then easy 
to show that the local interaction h,,,,, in (13) only has the following non-vanishing 
matrix elements: 

(!?) !here 2ppezrs I ‘chemh! pn!c”!iI!’ term 1” !hP third !inr and pair crca!ion aK! 

(uuI h l u u )  = -( q’ + q-’) 

(U, - u \ h ~ O O ) = ( O O l h l ~ ,  - w ) = - ( q + q - ’ )  

(u, -ul h I u, -U) (U, -U\ h I - U, U) = 1 (14) 

(Oulh(u0) = (uOlh(0o) = -1  

(Oul  h10u) = (U01 h1u0) = -f(q’+ C2) 
where loo), IOU) ,  luu‘) etc denote the combined states at sites j and j + l .  For the ZF 

model one shows that the local interaction in (3) has the same non-vanishing matrix 
elements, which then proves the equivalence in (13). 

Finally we notice that a t  q = +i we recover from (13) the supersymmetric 1-J model 
(1) with a chemical potential p = 2, i.e. we have 

H b ’  = H( - 1, l ;  i )  = H,, + 2N (15) 

where N is the total particle number. We remark that the chemical potential renders 
the empty chain 10 0 0..  , 0) an absolute ground state, while the interesting physics for 
the I-J model (without chemical potential) takes place in sectors with large particle 
numbers. 

More detailed investigations of the models will be published elsewhere. 

References 

AfReck I ,  Kennedy T, Lieb E H and Tasaki H 1988 Commun. Math. Phys. 115 477 
Alcaraz F C and Martins M J 1989 Phyr  Rev. Letr. 6 3  708 
Anderson P W 1987 Science 235 1196 
Babujian H M and Tsvelick A M 1985 Nuef. Phys. B 265 [FS151 24 
Bares P A  and Blattcr G 1990 Phys. Re”. Lell. 64 2567 
Batchelor M T, Mezincescu L, Nepomechie R 1 and Rittenberg V 1990 J.  Phys. A: Math. Gen. 13 L141 



Letter to the Editor L959 

limbo M 1985 Lelt. Moth. Phyr. 10 63 
Kirillov A N and Reshetikhin N Yu 1987 J. Phy.?. A: Math. Gen. 20 1565, 1585 
Lai C I974 J. Molh. Phys. 15 1675 
Sarkar S 1990 J. Phys. A: Math. Gen. 23 L409 
Schlottmann P 1987 Phys. Rev. B 36 5177 
Sutherland B 1975 Phys. Re". B 12 3795 
Wiegmann P B 1988 Phys. Reo. L ~ I I .  60 821 
Zamolodchikov A B and Faleev V A 1980 Sou. J. Nucl Phys. 32 298 
Znang F C and %ice T M i988 Phys. Reo. E 3 i  5759 


